32 Class DJH model Conversion to DCC

This is a DJH 32 class model I built many years ago. The white metal kit was assembled completely by soldering in the 1980s and was a good runner on DC. It saw service during the ’80s on the old Warrimoo layout in the Blue Mountains.

I converted it to DCC in 2015 using a Soundtraxx Micro Tsunami model TSU-750 #826001 Light Steam. This is a generic US decoder which serves the purpose but lacks a true NSWGR whistle. I can live with some compromises! The USA Reading 6 Chime whistle was my compromise.

These days my preferred decoders are ESU Loksound and there are some local suppliers who can supply one with the correct 32 class sound file.

The first step was to dismantle the loco for access to the boiler and chassis for installation of the speaker and headlight and to replace the motor and flywheel as well as adding additional power pick-ups as below:

The motor I used was a NWSL Flatcan 12 x 20mm Double 1mm Shaft (#1220D-9)
I ordered mine on-line from this company. You may be able to buy one, or similar alternative locally. I added:

    • a flywheel – 1.0mm shaft ID, 10mm OD not countersunk #435-6
    • shaft adapter bushing 1.0mm ID x 2mm OD to provide enough diameter to match the gearbox shaft #10171-9
    • nylon (nitrile?) model aircraft fuel line to flexible couple to the gearbox.

The headlight was a pre-soldered  Warm White 0603 SMD LED purchased on ebay. These have leads which are long enough to go through to the tender. But they are fragile and require handling with care. An 0603 LED is 1.6 mm x 0.8 mm x 0.6 mm thick and seems a good size for a steam loco.

The photo below shows the 32 class headlight – I drilled a tiny hole through the base of the headlight, right through the rear mounting and into the firebox. It needs to be just big enough to take the two wires. The LED was held in place with a speck of canopy glue. The alignment of the drilled hole is shown in red. The wires were held in place within the boiler barrel with small dabs of blu-tack.

It is vital that a series resistor be placed in either feed wire to the LED. I have adopted as standard, a 3k3 (3,300 Ohms) resistor as there is no need for NSWGR lights to be too bright. Remember that a resistor has no polarity ie. can be installed either way around.

The Speaker – I have separate posts to describe fitting a speaker to the smokebox but to save you searching, here is the gist of the 32 class receiving a speaker in the smokebox. Facing upwards towards the funnel which needs to be drilled out. This is the sugar cube speaker enclosure under construction:


The cylinder is cut from a small piece of plastic tube to match boiler ID.
End caps have now been added. The wires should be brown but I ran out!

While the boiler is off the chassis, extra pick ups can be added.


The wipers are phosphor bronze with the front ones the correct size (0.008″) and the rear ones, looking like crow  bars at 0.015″ (they haven’t impeded the loco!). The wipers are only needed on the side with insulated tyres.

To get the wipers out to the correct spacing, a plastic insulating piece was combined with a small piece of PCB (printed circuit board) to make a mounting to solder the wipers and the connecting wire to the tender.

The Tender

Access needed to be provided to the tender space as shown below

A plastic ferrule was glued to a hole drilled just forward of the front bogie pivot – so that the wiring can safely pass into the tender. The other half of the exercise is getting the wiring out of the locomotive

Here we see 8 wires emerging:

  • Orange and Grey – to the motor
  • one pair of Red and Black – to the Right & Left track respectively.
  • one pair (incorrectly) Red & Black which should be both Brown for the speaker
  • one pair of thin and clear LED headlight wires. These are identified by one wire being shorter – this is the Cathode and connects to the White decoder wire. The other wire is a little longer and is the Anode wire which connects to the Blue decoder wire. They need to be marked before the LED is installed and I coloured the end of the Anode wire BLUE with a marker pen.

The tender is where the fiddly wiring occurs. Since there are 8 wires needing to be connected to the decoder, a plug and socket arrangement is difficult. I choose to make those connections via a small pair of home made PCBs. They are shown below

The photos below show handmade simple PCBs made with a small saw and a mitre box. The single sided PCB material can be bought on eBay from sites such as this one. The little PCBs are cleaned thoroughly on the copper side with very fine wet & dry and can then be tinned with a little resin cored solder. Make sure the tracks remain electrically separate.

I made 2 for the tender above so that I could solder the 8 wires from the loco to the 8 wires from the decoder:

Here you can see the 8 connections from the decoder. The resistor (1k – should be 3.3k) is settled behind the LH PCB with one end of the resistor joined directly to the white wire from the decoder and the other end of the resistor soldered to the rear PCB strip. That will be where the Cathode of the headlight lead is soldered.
The other headlight lead (marked with blue felt pen) will be soldered to the strip connected to the blue decoder wire.

Also visible in the above photo is another little PCB pad which will carry the phosphor bronze wipers to the tender bogies on the insulated wheel side.

The photo above is actually a 36 Class tender bogie but you can see how the principle is the same. Similarly, the photo below is of the front of the 36 class tender showing how the little PCBs were fitted to this slightly roomier space.

 

Speakers for DCC

SPEAKERS FOR DCC

This post combines new material with some hidden away in other posts. The photo below was of a common speaker such as those supplied with Loksound decoders. They are quite suitable for large body diesels and other larger models that have enough room.

This was the 25mm (1″) 4Ω  1.5Watt speaker and enclosure used for a 42 class diesel project. A silly but important point is make sure you solder the speaker wires to the speaker terminals before you seal it in place!

It is very important to make sure that the enclosure is fully SEALED around, and behind the speaker. The bigger the enclosure, the better but we are usually stymied by lack of space. See below for using Canopy Glue for sealing.

One of the best speakers I have used is the so-called “Sugar Cube” speaker. With even a small enclosure, they are remarkably compact combined with good sound quality. The ESU version is 12mm x 14mm and 5.5mm thick:

This is a sugar cube speaker with wires attached and ready to have an enclosure wrapped around. This enclosure is a little deeper than the depth of the speaker to improve the bass response.

I prepare some styrene strips equal to the height required and use a small machined metal block as an aid to assemble the pieces using a styrene cement.

The next photo shows one of the best TIPs that I have. If you are using super glue for assembling anything, use a small piece of teflon bearing material (or even thicker plastic) and drill a small depression into it. Put a drop of super glue in to the recess and it will last up to an hour or more without going off! It also helps when applying styrene cement. [PTFE teflon sheet can be purchased on eBay by searching for ptfe sheet]

To seal the speakers into their enclosure, I prefer to use “Canopy Glue” as it is sticky and remains in place, plus, it dries clear. As with the super glue, the best means of applying it is with a thin applicator such as a T Pin or a tooth pick:

THINK OUTSIDE THE SQUARE:

The speaker enclosure doesn’t have to be rectangular – consider a cylindrical one to fit inside the smokebox of a steam loco. I have fitted them to brass steam locos including 30 class, 36 class and whitemetal 32 class. Like this:

The curved part has been cut from a small section of plastic pipe which needs to be filed flat as in the previous photo. Two end plates have to be shaped to fit.

The benefit of the smokebox speaker is that the sound is coming from the correct part of the loco. The photos below show a 25mm speaker fitted to a custom housing in the tender of a 36 class brass loco. The sound was brilliant – but it was clearly radiating from the wrong end of the loco.

Fitting the cylindrical speaker can be difficult. In my brass 30 class (small) loco, the smokebox door was loose so I was able to remove it. For the larger 36 class boiler, I was able to insert the speaker from the firebox end of the boiler tube:

THERE ARE OTHER OPTIONS

This is an iPhone 4S speaker purchased from eBay. In this case I have split the speaker to see what was happening inside. As I understand it the chamber on the right is an acoustic cavity to improve the sound. The port where the sound exits is shown with a pink arrow, just below the speaker itself.

Here we have a 40 class diesel look-alike modified from a Kato RSD4/5 model. I like this model as it is well engineered and very smooth and powerful with 2 large flywheels. The tight space in the narrow hood filled with mechanism and weights meant I couldn’t easily fit a sugar-cube speaker but and iPhone 4S speaker sat nicely on top of the motor.
A close up shows the sound port on the RH end of the speaker.
Here is a sound file using an iPhone 4S speaker with an ESU V4 Loksound decoder programmed with an ALCO 12cyl 244 (FT) #73401 sound file. The loco sound volume is quite low and would be deafening if run at full volume.

I note that iPhone 4S speakers are currently (24/3/19) available on eBay from as little as $1.58 ea (+ GST) and with free postage.

For an even smaller loco, consider other iPhone speakers. The first 3 work but you would need to experiment.  The iPhone 5 speaker may be a good option for a small loco.

Solder directly to the contact springs.

iPhone 5 speaker showing the parts that can be removed.

If you have had any interesting success with speakers, I would be happy to post that on this blog (with acknowledgement). Rick

Lima 42 Remotor + DCC

The old Lima 42 class diesel has been around my layouts for decades and I am not too proud to run it mixed in with all my more recent and highly detailed models. It ran well on DC and even better on DCC with a LokSound V4.0 decoder coupled with a replacement pancake motor and pickup on all wheels.

The motor shown in the top 2 photos was purchased on eBay as a specific replacement for the 42 class and other similar models. It satisfies the requirement of isolating the motor from the frame for DCC and runs well.

I always try to achieve pickup on all wheels or as many as possible. In this case it was easy. I added two small pieces of PCB to form solder pads. They are clearly visible attached to the two sideframe brackets with epoxy and carrying the RED flexible feed wire and the phosphor bronze pickup wires.

Note the holes shown in the bottom of the chassis to the top left. These are for the speaker shown in later photos.

A thicker piece of copper wire connects the 2 pads and one carries the p/bronze wires for 2 wheels and the other for 1. The photos show the setup.

The photos above and below show the decoder attached to the roof of the body shell with Blu Tack and small piece of strip board (Veroboad) used to carry the series resistors (1k – 1000Ω) for the front and for the rear headlights. Notice the “interrupts” cut into the tracks under the resistor. These were made with the tip of  a small drill. This isolates both ends of the strip. Normally the resistors would be mounted on the other side of the board but this method works  just as well

In the photo above I have removed most of the interior glazing except the sections for the front and rear windows. The portholes are glazed with Butyrate 15 thou strips held in place with tiny spots of Canopy Glue. [K & S Clear Plastic Sheet #1308]

In this model I used a 5mm (front) and 3mm (rear) yellow glow LEDs with ends of the LED filed flat and then polished. To avoid light appearing from other than the headlights, I carefully painted all but the front of the LED flat black.

I couldn’t find an appropriate and cheap socket to accept the 8pin decoder plug on the LokSound V4 so I made my own from a machined pin DIL (Dual In Line) IC (Integrated Circuit) 8 pin socket (eg Jaycar part# PI-6452 or on eBay).

The first step is to carefully cut the socket into 2 parts…

… as shown here.

Clean up the cut edges – the ones below need to be filed, but it’s not important as the correct spacing is achieved by gluing the IC socket back together on the smooth faces…

… as shown below with the prepared pair stuck in a blob of Blu Tack. Rough the surfaces a little and bond together with a spot of epoxy.

For this installation it suited me to bond the lead weight into the chassis with silastic and epoxy the prepared socket to the top of that. I have an old plug cut from another hard wired LokSound decoder that I can use as a guide to indicate which coloured wires need to be soldered to the rear of the new socket.
Note that installing the socket this way means that the off-centre plug can only go in one way around (good).

The mounting position of the speaker is shown above requiring some holes to be drilled in the bottom of the chassis. The speaker (which is not my preferred sugar cube type but was one of a number of spares I had in the workshop) is mounted just clear of the surface to allow sound to escape into the body shell. The speaker fits within the its housing but importantly, needs to be very carefully sealed into the housing. I use Canopy Glue on a toothpick to carefully seal every gap around the edge of the speaker, keeping it clear of the speaker cone. Also seal the spaces where the wires exit the housing – silastic may be better here.

This was the 25mm (1″) 4Ω  1.5Watt speaker and enclosure used for this project.

Here is a short video:

“Charles” Gets a Decoder

A project with a difference – PART 2.
A friend has a Fleischmann™ type 4028 0-6-0 Steam Locomotive which he would like to use as a “proving” loco for his under-construction Wolgan Valley layout. It’s a sort of a recycling exercise. This is the next exciting episode – Charles gets a decoder!

The decoder is a LokSound V4.0 running the ESU sound file: 54413-LSV4.0-Dampf-BR80-R5      It sounds like this:

Very Germanic!! But it will be OK for the purpose, assuming that the NSWGR may not have bothered changing the whistle.

This is where the LokSound decoder will reside. For a tank engine, the Fleischmann 0-6-0 has plenty of room. After a little testing, it was least obtrusive in the cab roof and is held in place with Blu Tack.

There are other things to do with DCC sound installs one of which is the Speaker and more details will follow. This is one is my favourite Sugar Cube speakers in my favourite mounting area – the smokebox. That way the sound comes from the right part of the loco! [post coming on fitting a sugar cube into the smokebox of a brass 30T class loco]

The motor, especially in this ringfield type requires special attention to make sure that it is isolated from the frame.
There is excellent technical advice on this in an article I obtained on the “All Aboard” Mittagong website – except it doesn’t seem to be there any more. The original PDF file I downloaded from “All Aboard” is however available HERE.

The replacement Isolated Motor Shield is shown below fitted to the mechanism. It is sold as Fleischmann replacement part # 50 4730 and is available from All Aboard as a spare part (not shown on the web site).

Here you can see the wiring from the decoder to the motor – Orange and Grey to the motor and Red and Black to the track pickups (loco frame and wheels). Some other wiring is visible and is described below.

The decoder has a number of unused function wires and they are held captive by the (yellow) kapton tape. Two extra simple PCBs are also visible. Simple PCBs are described in THIS POST.
The one on the LEFT has 4 strips – 2 carry the brown wires to the speaker (in the smokebox) and 2 carry the wires to the front headlight.  The bottom strip can be seen to have a connection via a resistor to the WHITE function wire (headlight).

The value of the resistor is 3k3 (3,300Ω) indicated more clearly on the board to the RIGHT where the colour code is ORANGE, ORANGE, BLACK, BROWN, BROWN which is 3 3 0 (1 nought) and (1 percent tolerance) ie 3300 Ohms ± 1%  This value is higher than most people use but it provides a more prototypical yellow glow in the Warm White LED.

Image© courtesy eBay

Incidentally the LED is a tiny pre-wired device where the LED size is 1mm x 0.5mm and is available in Warm White, Bright White, Red and Green & available on eBay for ridiculous prices.

Sold as: Pre-soldered micro Litz wired leads Warm White SMD LED 0402

They will fit into the smallest headlights on a loco but must be handled with care.

The pcb to the RIGHT is shown in detail below and feeds the rear headlight and the 3k3 resistor is on one strip which has been interrupted under the resistor making 2 isolated pads.

The common wire is BLUE and feeds to both small PCBs. The YELLOW wire is the function output to the rear headlight.

The speaker used is a Sugar Cube which measures 12mm x 14mm x 5.4mm thick (bare). This is one being prepared in an enclosure.The following speaker is ready to go in:More about speakers in a separate Post.
And to save you scrolling back up – the photo below is repeated and shows the sugar cube sitting in the Smokebox and under the chimney which has been drilled out so that the sound is coming from the front of the loco both top and bottom. I will go to any length to try to get the speaker OUT of the tender and into a more realistic place. You can detect the difference in a passing HO loco.

If the speaker enclosure is mounted on the chassis it is inconvenient to wire as a plug and socket arrangement would be needed. Instead, I have located the enclosure to the inside of the body shell by the simple of expedient of a blob of Blu Tack in the top of the body which “grabs” the speaker when you assemble the two parts.  [Yes, I know … there should be a plug connecting the decoder and the motor/pickups but I got lazy]

Here is another loco with homemade plugs and sockets so that the body mounted  speaker can be separated from the chassis:The 2 brown speaker wires from the decoder are connected to the speaker via a 2 pin plug. The body and chassis can then be separated. This loco is a 73 class shunter.

The next episode will cover painting into NSWGR “colours” but in the meantime, here is a preview of “Charles” making some noise! Deutschland Über alles!

“Charles” Gets a Makeover!

This is a project with a difference. A friend has a Fleischmann™ type 4028 0-6-0 Steam Locomotive which he would like to use as a “proving” loco for his under-construction layout. Sort of a recycling exercise.

He decided that a hypothetical, but possible scenario had occurred with his Wolgan Valley railway: “the NSWGR had decided to import a German 0-6-0 class loco for evaluation. Part of the process involved a repaint into NSWGR colours (or lack thereof) and a later sale to the Commonwealth Oil Corporation, Newnes for use on the Wolgan Valley line.”

Here is “Carl” pretty much as he arrived at Brolgan Road, with the exception of the Kadee couplers which have been fitted as described below.

My task was to implement that conversion on the model and convert it to DCC with sound. This is the story of that conversion of “Carl” (which name appeared on the side tanks) to “Charles” on its rebirth on the Wolgan valley line. I believe it will carry a NSW “X” number.

It is a little over the NSWR loading gauge but squeaks past my platforms. Wheel flanges are a bit gross but have been filed a little and now run through my code 75 points OK. As it is also to be a test bed for DCC it is an interesting exercise. The model itself is beautifully constructed.

Step 1 is the fitting of Kadees to match the rest of the rolling stock.
And in the process give it a good run on DC to make sure that the project is feasible. As you can see in the lead photo, it is running just fine on my layout under DC and it proved to be quite powerful and relatively smooth.

I am impressed by the engineering in this model but not surprised due to its West German origin. The chopper coupler keeper is easily removed by unscrewing the buffers.
That releases the keeper plate, chopper coupler and the centreing spring strip (latter 2 not used).
Tap the metal chassis with an 8BA thread (or to your choice) to suit a standard Kadee plastic machine screw.
As pointed out earlier, I found the existing hole in the front of the loco to be a little large and tapped the hole throught the plastic foot plate under the smokebox door. That means that the front coupler now needs to be unscrewed to remove the body.
The hole in the keeper plate needs to be enlarged to take the Kadee screw – I achieved that with a small file.
The screws are quite long and need to be cut to length (sprue cutter or similar) and the end filed smooth.
The chosen Kadee was a #149 Long Overset Whisker coupler to get the coupler jaws down to an acceptable height. The draft gear box fits within the existing housing and the mounting hole can be aligned with the original holes by trimming the back off the draft gear box.
The #149 coupler needs to be trimmed to length as shown below. You can see here why they are called “whisker” couplers.

The bottom plate is glued in place (I used Faller Expert Plastic Cement which has a nice fine delivery tube).
You can see here how the top lip has been cut and filed flush
The coupler height is still a fraction high – if it is a worry a small styrene shim could be added above the Kadee.
And here is “Carl Charles” happily coupled to a small freight consist. Still running DC.

The next post will cover conversion to DCC using a Loksound V4 decoder with sugar cube speaker in the firebox. Then the re-paint and a video of him chuffing happily away to his new home in the Blue Mountains.